Dispersal-induced destabilization of metapopulations and oscillatory Turing patterns in ecological networks
نویسندگان
چکیده
As shown by Alan Turing in 1952, differential diffusion may destabilize uniform distributions of reacting species and lead to emergence of patterns. While stationary Turing patterns are broadly known, the oscillatory instability, leading to traveling waves in continuous media and sometimes called the wave bifurcation, remains less investigated. Here, we extend the original analysis by Turing to networks and apply it to ecological metapopulations with dispersal connections between habitats. Remarkably, the oscillatory Turing instability does not lead to wave patterns in networks, but to spontaneous development of heterogeneous oscillations and possible extinction of species. We find such oscillatory instabilities for all possible food webs with three predator or prey species, under various assumptions about the mobility of individual species and nonlinear interactions between them. Hence, the oscillatory Turing instability should be generic and must play a fundamental role in metapopulation dynamics, providing a common mechanism for dispersal-induced destabilization of ecosystems.
منابع مشابه
Turing patterns in network-organized activator-inhibitor systems
Turing instability in activator-inhibitor systems provides a paradigm of nonequilibrium pattern formation; it has been extensively investigated for biological and chemical processes. Turing pattern formation should furthermore be possible in network-organized systems, such as cellular networks in morphogenesis and ecological metapopulations with dispersal connections between habitats, but inves...
متن کاملImpact of dispersal on the stability of metapopulations.
Dispersal is a key ecological process that enables local populations to form spatially extended systems called metapopulations. In the present study, we investigate how dispersal affects the linear stability of a general single-species metapopulation model. We discuss both the influence of local within-patch dynamics and the effects of various dispersal behaviours on stability. We find that pos...
متن کاملAccelerated dynamics in active media: from Turing patterns to sparkling waves.
We report the destabilization of stationary Turing patterns and the subsequent emergence of fast spatiotemporal dynamics due to reactant consumption. The localized hexagonal Turing spots switch from a stationary regime to a dynamics state by exhibiting spatial oscillations with two characteristic wavelengths and one representative temporal period. These oscillatory Turing spots are not temporal...
متن کاملStabilization through spatial pattern formation in metapopulations with long-range dispersal
Many studies of metapopulation models assume that spatially extended populations occupy a network of identical habitat patches, each coupled to its nearest neighbouring patches by density-independent dispersal. Much previous work has focused on the temporal stability of spatially homogeneous equilibrium states of the metapopulation, and one of the main predictions of such models is that the sta...
متن کاملDispersal, environmental forcing, and parasites combine to affect metapopulation synehrony and stability.
Dispersal can have positive and negative effects on metapopulation stability and persistence. One prediction is that high levels of dispersal synchronize density fluctuations between subpopulations. However, little is still known about how biotic and abiotic factors combine to modify the effects of dispersal rate on synchrony and metapopulation dynamics. In a fully factorial experimental design...
متن کامل